Bipartite matching

G=(V,E,U) be a bipartite graph, such that V and U are two disjoint sets of vertices, and E is a set of edges connecting vertices from V to vertices in U

The problem: Find a maximum-cardinality matching in a bipartite graph G.

A greedy approach:

1.Suppose that we start with a maximal matching, which is not necessarily a maximum matching. Can we somewhat improve it?


We can improve the edge 2A with the edges 1A and 2B，但仍resticted to replace one edges with 2 edges. 如果我們發現相同情況,將k個邊以k+1個邊取代，we can improve?

2.但我們改善的目標是增加更多的matched vertices,方法如下：
We start with an unmatched vertex v and try to find a match for it. If we already have a maximal matching, then all of v’s neighbors are already matched, so we try to break up a match. ＝＞找an alternating path：
An alternating path P for a given matching M is a path from a vertex v in V to a vertex u in U, both of which are unmatched in M.，這使得P的邊在E-M和M中輪流切換(the edges of P are alternatively in E-M and M)，即第一邊在E-M中，第二邊在matching M中，….直到最後的邊不屬於M (即E-M). Therefore, if we replace all the edge of P that belong to M by the edges that do not belong to M, we get another matching with one more edge.

· An alternating-path theorem: A matching is maximum IIF it has no alternating paths.

· Start with the greedy algorithm:

1.Adding as many edges to the matching as possible, until we get a maximal matching.

2.Then, search for an alternating path, and modify the matching accordingly until no more alternating paths can be found.

＝＞The resulting matching is maximum.
· How to find alternating paths?

Transform the undirected graph G to a directed graph 
[image: image1.wmf]G

 by directing the edges in M to point from U to V and directing the graph not in M to point from V to U. The alternating path corresponds exactly to directed path from an unmatched vertex in V to an unmatched vertex in U.such a directed path can be found by any graph-search procedure,如DFS

[image: image2.wmf]1

2

3

4

5

6

A

B

C

D

E

F

U

V

(b)

1

2

3

4

5

6

A

B

C

D

E

F

U

V

(a)

Finding alternating paths.


· Time complexity:

1.Since each alternating path extends a matching by one edge, and there are at most n/2 edges in any matching(where n is the number of vertices), the number of iterations is at most n/2.

2.The time complexity of a search is O(|V|+|E|)

＝＞(|V|/2)* O(|V|+|E|)=O(|V|(|V|+|E|))

test whether a given graph is bipartite or not.

Use bipartite() to test a given graph.

/* each node has two additional fields, mark and visit
          false  ,not visit

visit =     true  ,has been visited


          0 : not set yet   

mark =    1 : node is in V1    

          2 : node is in V2    
bipartite( ) is a funtion, it

will return      true, if G is bipartite
              false, otherwise                 */
function bipartite(v, type: integer): boolean;

begin


visit[v]   true;


for all w adjacent to v do begin


if mark[w] = 0 then mark[w]   3-type


else if mark[w] = type then return(false);



if not visit[w] then



if not bipartite(w, 3-type) then return(false);

end;


return(true);

end;

這個algorithm改良自dfs( ) algorithm，走訪所有vertex，檢查是否所有相鄰vertex間的mark編號均能不同(即分屬不同vertex set)

□Write an algorithm to determine whether a directed graph is acyclic or not.

若graph G為acyclic，則可以對之做topological sort而得出結果；反之，則無法完成topological sort，將原algorithm簡化如下：

1. ct: ,0;

2. while ct≦n do begin
3. if every vertices have predecessors then begin
4. writeln(‘This graph is not acyclic!’);

5. goto outy;

6. end;

7. select a vertex p which has no predecessor;

8. Output p and delete all edges leading out of p;

9. ct: =ct+1

10. end;

11. writeln(‘This graph is acyclic!’)

12. outy: 
 1  2  3  4  5  6





 A  B  C  D  E  6





 1  2  3  4  5  6





 A  B  C  D  E  6





{





{





{








1

_1071123539.unknown

_1070277329.bin

