DFS & Find a cycle

Algorithm Depth_first_Search (G, v);

Input: G=(V,E) (an undirected connected graph), and v (a vertex og G);

Output:

Begin

Mark v;

Perform prework on v; {prework depends on the appication of DFS}

For all edges (v,w) do

If w is unmarked then Depth_first_Search (G, w);

Perform postwork for (v,w); {postwork depends on the application of DFS; it is sometimes performed only on edges leading to newly marked vertices;}

End

Algorithm Find_a_Cycle (G,v);

Input: G=(V,E) (an directed graph).

Output: Find_a_Cylcle (true if G contains a cycle and false otherwise).

Begin

Mark v;

v.on_the_path:=true; //prework

 {x.on_the_path is true if x is on the path from the root to current vertex}

 {initially x.on_the_path:=false for all vertices, and Find_a_Cycle is false}

For all edges (v,w) do

If w is unmarked then Find_a_Cycle (G, w);

If w.on_the_path then Find_a_Cycle:=true; halt; //postwork

If w is the last vertex on v’s list then v.on_the_path:=false; //postwork

End

Algorithm Connected_components (G);

Input: G=(V,E) (an undirected graph).

Output: v.component is set the number of the component containing v; for every vertex v.

Begin

Component_Number:=1;

While there is an unmarked vertex v do

Depth_First_Search (G,v);

 (using the following prework: v.Component:=Component_Number;)

 Component_Number:= Component_Number+1;

end

