Huffman encoding:

Algorithm Huffman_encoding(s,f);

Input: S (a string of characters), and f (an array of frequencies).

Output: T (the Huffman tree for S).

Begin

 Insert all characters into a heap H according to their frequencies;

 While H is not empty do

 If H contains only one character X then

 Make X the root of T.

 Else

 Pick two characters X and Y with lowest frequencies and delete them from H;

 Replace X AND Y with a new character Z whose frequency is the sum of frequencies of X and Y.

Insert Z to H.

Make X and Y children of Z in T{Z has no parent yet}

End

Time complexity:

 Building the tree takes constant time per node.

 Insertions and deletions take O(log n) steps each.

 Overall, the running time of the algorithm is O(n log n).

Examples 1:

	character
	frequencies
	Word code

	A
	5
	111

	B
	2
	1001

	C
	3
	101

	D
	4
	110

	E
	10
	0

	F
	1
	1000

Huffman Tree:

[image: image1.png]= Huffman(C):

= Algorithm :
Huffman(C)
{ n=|C|
Q=C; [/ Q: priority queue
for i=1 to n-1 do
{ z = allocate-Node() ;
x = left(z) = Extract-min(Q) ;
y = right(z) = Extract-min(Q) ;
f(2) =f(x) +f(y) ;
Insert(Q,z); }
return Extract-min(Q) ; }

= Complexity : O(nlogn)

BN

p10.

2

