Algorithm single_shortest_paths(G,V);

Input: G=(V,E) (a weighted directed graph), and v(the source vertex).

[image: image1.wmf]Î

Output: for each vertex w, w.sp is the length of the shortest path from v to w.

{all lengths are assumed to be nonnegative.}

begin

for all vertices w do

w.mark:=false;

[image: image9.wmf]¥

 w.sp:= ;

v.sp:=0;//v未marked

while there exits an unmarked vertex do

 let w be an marked vertex such that w.sp is minimal;//第一次會挑到v

 w.mark:=true;
 for all edges(w,z) such that

if w.sp+length(w,z)<z.sp then

 z.sp:=w.sp+length(w,z)

end
[image: image10.wmf]¥

[image: image11.wmf]¥

[image: image12.wmf]¥

[image: image13.wmf]¥

mit：

initialize-single-source(G,s)

d[v]：upper bound on the weight of a shortest path from source s to v.
pi[v]：the predecessor of v along s ahortest path from s to v.

{ for each vertex v
[image: image20.wmf]¥

V[G]

 do { d[v]=
[image: image2.wmf]¥

 pi[v]=nil}

 d[s]=0}

relax(u,v,w)

{ if d[v]>d[u]+w(u,v)

 then {

 d[v]=d[u]+w(u,v)

 pi[v]=u}

Dijstra’s algorithm:

Algorithm

G=(V,E), w(u,v)>=0 for each (u,v)
[image: image3.wmf]Î

 E

Q：priority queue with d as the key.

Dijkstra(G,w,s)

{

initilialize-single-source(G,s)

s=
[image: image4.wmf]f

Q=V[G]

While Q<>
[image: image5.wmf]f

 do

{ u=Extract-min(Q)

s=s
[image: image6.wmf]È

{u}

 for each vertex v
[image: image7.wmf]Î

adj[u]

 do relax(u,v,w)

 }

}

Algorithm all_pairs_shortest_paths(weight);

Input: weight (n*n adjancy matrix representing a weighted graph).

{weight[x,y] is the weight of the edge (x,y) if it exits, or otherwise;Weight [x,x] is 0, for all x}

Output: at the end, the matrix weight contains the length of the shortest paths.

Begin

For m:=1 to n do {the induction sequence}

 For x:=1 to n do

For y:=1 to n do

 If weight[x,m]+weight[m,y]<weight[x,y] then

 weight[x,y]:= weight[x,m]+weight[m,y]

end

time complexity: O(
[image: image8.wmf]V

3)

algorithm transitive_closure(A);

input: A(an n*n adjacency matrix representing a directed graph)

{A[x,y] is true if the edge(x,y) belongs to the graph, and false otherwise; A[x,x] is 1 for all x}

output : at the end, the matrix A represents the transitive closure of the graph.

Begin

For m:=1 to n do {the induction sequence}

 For x:=1 to n do

For y:=1 to n do

 If weight[x,m] and weight[m,y] then

 weight[x,y]:= true

end

algorithm transitive_closure(A);

input: A(an n*n adjacency matrix representing a directed graph)

{A[x,y] is true if the edge(x,y) belongs to the graph, and false otherwise; A[x,x] is 1 for all x}

output : at the end, the matrix A represents the transitive closure of the graph.

Begin

For m:=1 to n do {the induction sequence}

 For x:=1 to n do

 If a[x,m] then

For y:=1 to n do

 If weight[m,y] then

 weight[x,y]:= true

end

� EMBED Equation.3 ���

V

Z

W

W.sp

Length(w,z)

6

4

7

2

9

1

3

2

5

10

� EMBED Equation.3 ���

y

� EMBED Equation.3 ���

tv

� EMBED Equation.3 ���

x

� EMBED Equation.3 ���

u

v

0

6

4

7

2

9

1

3

2

5

10

� EMBED Equation.3 ���

y

� EMBED Equation.3 ���

tv

� EMBED Equation.3 ���

x

� EMBED Equation.3 ���

u

v

0

10

5

1

[image: image14.wmf]¥

[image: image15.wmf]¥

[image: image16.wmf]¥

[image: image17.wmf]¥

[image: image18.wmf]¥

[image: image19.wmf]¥

_1071862958.unknown

_1102236033.unknown

_1102236035.unknown

_1102236034.unknown

_1071863052.unknown

_1071863092.unknown

_1102236032.unknown

_1071863024.unknown

_1071862515.unknown

_1071862864.unknown

_1068620739.unknown

_1071862444.unknown

_1068619075.unknown

